

David Crisp (Jet Propulsion Laboratory, California Institute of Technology For the CEOS AC-VC Team

May 15, 2019

Copyright 2019 California Institute of Technology.

Government sponsorship acknowledged.

living planet symposium 13–17 May 2019 | Milan, Italy

Atmospheric Inventories in the Context of the Paris Agreement

- Atmospheric measurements of CO₂ and CH₄ from ground-, airborne- and space-based sensors could reduce uncertainty in national emission inventory reports by:
 - providing nations with timely, quantified guidance on progress towards their emission reduction strategies and pledges (NDCs)
 - identifying additional emission reduction opportunities; and
 - tracking changes in the natural carbon cycle caused by human activities (deforestation, degradation of ecosystems, fire) and climate change
- Atmospheric measurements support conventional, bottom-up inventories by:
 - Improving the frequency and accuracy of inventory updates for nations not well equipped for producing reliable inventories, and
 - helping to close the carbon budget by providing measurements over ocean and over land areas with poor data coverage (tropical forests, polar regions)

Atmospheric Greenhouse Gas Inventories

Complementing Bottom-Up GHG inventories with Top-Down atmospheric inventories

- Atmospheric CO₂ and CH₄ measurements provide an integrated constraint on the exchanges of these gases between land, ocean and atmosphere and their trends
- Fluxes inferred from atmospheric CO₂ and CH₄ measurements are not as source-specific as those used in bottom-up GHG inventories, but include contributions from sources often omitted or poorly characterized in bottom-up inventories

Combining Ground-, airborne-, and space-based atmospheric measurements

- At global scales, CO₂ and CH₄ concentrations are well characterized by precise, ground-based in situ measurements from surface and airborne sensors
- Estimates of column-averaged CO₂ and CH₄ dry air mole fractions (XCO₂ and XCH₄, respectively) from space-based measurements can augment the resolution and coverage of the *in situ* measurements

Collecting GHG Observations from Space: The Evolving Fleet

- Space agencies have supported a series of pioneering space-based GHG sensors including:
 - ESA's ENVISAT SCIAMACHY,
 - Japan's GOSAT TANSO-FTS, NASA's OCO-2, China's TanSat AGCS, Feng Yun-3D GAS and Gaofen-5 GMI, Copernicus Sentinel 5 Precursor TROPOMI.
- Other space-based sensors have just been added to the fleet:
 - Japan's GOSAT-2 TANSO-FTS-2 and NASA's ISS OCO-3
- Others are under development:
 - CNES MicroCarb, CNES/DLR MERLIN, NASA's GeoCarb
- The next step purpose-built GHG constellations
 - The Copernicus CO₂ Sentinel (See Meijer et al.)

Persistent XCO₂ Anomalies Provide Insight Into Fluxes

The CEOS AC-VC GHG White Paper

The Committee on Earth Observations Satellites (CEOS) commissioned the Atmospheric Composition Virtual Constellation (AC-VC) team to write a white paper defining a global architecture for monitoring atmospheric CO₂ and CH₄ concentrations from instruments on space-based platforms

- 166-page document, 88 authors representing 47 organizations
- Executive Summary (2 pages)
 - Overview of objectives and approach for policy makers, CEOS/CGMS Agency leads
- Body of report (75 pages)
 - Science background and requirements, current and near-term mission heritage and system implementation approach, intended for program scientists and project managers
- Technical Appendices (42 pages)
 - "Textbook" summarizing state-of-the-art in measurements and models for scientists, engineers, and inventory community

http://ceos.org/document managem ent/Virtual Constellations/ACC/Docu ments/CEOS AC-VC GHG White Pap er Publication Draft2 20181111.pdf

Integrating Scientific Missions into a Prototype Operational Constellation

A Candidate Operational CO₂/CH₄ Constellation Architecture

The coverage, resolution, and precision requirements could be achieved with a constellation that incorporates:

- A constellation of 3 (or more) satellites in LEO with
 - A broad (> 200 km) swath with a footprint size < 4 km²
 - A single sounding random error near 0.5 ppm, and vanishing small regional scale bias (< 0.1 ppm)
 - Ancillary sensors to identify plumes (CO, satellites NO₂) or mitigate biases (CO₂ and/or CH₄ Lidar)
- A constellation with 3 (or more) GEO satellites
 - Over Europe/Africa, North/South America, and East Asia
 - Monitor diurnally varying processes (e.g. rush hours, diurnal variations in the biosphere)
- This constellation could be augmented with one or more HEO satellites to monitor carbon cycle of the high arctic

Developing Atmospheric GHG Inventories

The CEOS AC-VC GHG White Paper recommends the following process:

- Foster collaboration between the space-based and ground-based GHG measurement and modeling communities and stakeholders in the inventory and policy communities to refine the requirements and implementation plans for top-down atmospheric flux inventories;
- 2. Exploit the capabilities of the Committee on Earth Observation Satellites (CEOS), Coordination Group on Meteorological Satellites (CGMS) and the WMO Integrated Global Greenhouse Gas Information System (IG3IS) to produce a prototype atmospheric CO₂ and CH₄ flux product that is available in time to inform the bottom-up inventories for the 2023 global stocktake; and
- 3. Use the lessons learned from this prototype flux product to refine the requirements for a future, purpose-built, operational, atmospheric inventory system that more completely addresses the inventory process in time to support the 2028 global stocktake.

Space-based Measurements are Only One Component of an Atmospheric GHG Inventory System

Other Tools Needed for Atmospheric GHG Inventories

- Improved precision, spatial resolution, and coverage
 - Accuracy/Precision: Improved calibration
 - Resolution/Coverage: LEO and Geo GHG constellations
- Improved remote sensing retrieval algorithms
 - Optical properties: gas absorption and aerosol scattering
 - Retrieval methods: Optimized to analyze solar spectra
- Better coordination with ground-based/aircraft networks
 - Validation: TCCON, EM27-Sun, AirCore, Aircraft
 - Complementary coverage: polar regions, cloudy regions
- Improved atmospheric inversion models
 - Transport: Adequate resolution of mesoscale transport
 - Assimilation techniques: Incorporating ground-, aircraft-, and space-based GHG data and transport fields

Progress and Near-term Plans

- The OCO-2 team is performing a multi-model intercomparison to retrieve CO₂ fluxes on regional scales from *in situ* and OCO-2 observations (Crowell et al. Atmos. Chem. Phys. 2019)
 - Global annual carbon sink: 3.7±0.5 PgC (1.5±0.6 PgC from land)
 - Best agreement in northern hemisphere extratropics, which are well sampled by the surface networks
 - Largest difference over tropical Africa few in situ measurements
- Plans: An atmospheric GHG inventory for 2023 Paris Stocktake
 - The OCO-2 atmospheric inversion team is developing a prototype high resolution global inversion using the OCO-2 version 9 XCO₂ product, with a target delivery date at the end of 2019
 - This product will be compared to results generated by the Copernicus CO₂ Human Emissions (CHE) project and other teams provide a more comprehensive assessment of fluxes and their uncertainties
 - Results from this intercomparison effort will guide the development of an updated atmospheric flux inventory that will be delivered early in 2021

